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Orbits around Schwarzschild black holes

In general, if one knows the metric, then one can calculate any
geodesic trajectory in space-time

Orbits around_a Schwarzschild black hole can be easilyc"élculated using the
‘ metric and the relevant symmetries.

Let us call &4# a vector in the direction of a given symmetry (i.e. k# 1s a Killing
vector). A static situation 1s symmetric in the time direction, hence we can write
k= (1,0,0,0).

The 4-velocity of a particle with trajectory x« = x«(t ) 1s ut = dx#/dr . Then, since u0
= E/c, where E 1s the energy, we have:
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If a particle moves along a geodesic in Schwarzschild geometry:
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Similarly. for the symmetry in the azimuthal angle ¢ we have £# = (0,0,0.1).
in such a way that:

3 — _[ = constant.
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In the Schwarzschild metrie we find. thern.
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Dividing the interval by ¢? dz?
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Using the conservation equations
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Expressing the energy in units of 7¢2 and introducing an effective

potential Ve,
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For circular orbits of a massive particle we have the conditions
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The orbits are possible only at the turning points of the effective potential:
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L 1s the angular momentum in units of mc and r, = GM/c? is the
gravitational radius. Then,




Orbits around Schwarzschild black holes

For L2 > 12¢2r2there are two solutions. The negative sign

corresponds to a maximum of the potential and 1s unstable. The
positive sign corresponds to a minimum, which is, consequently,
stable.

At L2 = 12¢2r 2 there 1s a single stable orbit. It is the innermost
marginally stable orbit, and it occurs at 7 = 6r, = 37 .-
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Typical effective potential for a massive particle of fixed specific anqular momentum in the
Schwarzschild metric.



The effective potential

Different values of L




Orbits around Schwarzschild black holes

The specific angular momentum of a particle in a circular orbit at 7 1s:

The proper and observer’s periods are:
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Orbits around Schwarzschild black holes

When 7 —3r, both L and £ tend to infinity, so only massless

particles can orbit at such a radius. Photons orbiting at such a
distance form the photosphere of the BH. The photosphere is 1.
unstable, and 2. unobservable.

The energy of a particle in the innermost stable orbit can be obtained from the
above equation for the energy setting r = 6rg. This yields (units of m c?):
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Since a particle at rest at infinity has E = 1, then the energy that the particle should
release to fall into the black hole i1s 1 — (2/3)ﬁ = 0.057. This means 5.7 % of its
rest mass energy, significantly higher than the energy release that can be achieved
through nuclear fusion.




Tidal forces

Tidal forces are the effect of spacetime curvature on
extended bodies. Different parts of the body experience
different accelerations.
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Tidal forces

The local velocity at 7 of an object falling from rest to the black hole is

proper distance dr
proper time (1 —2GM/c2r)dt’

Vlpc =

Hence, using the expression for dr/dt from the metric
dr 2GM\'* ([ 2GM
—_— - l - )
dt c2r c?r

2"g 1/2 : . |
Vioe = — (1n units of ¢).

we have,



Tidal forces




Tidal forces

The tidal acceleration on a body of finite size A 1s simply.
Ag=(2r/r3)c2Ar.

This acceleration and the corresponding force becomes infinite at the
singularity. As the object falls into the black hole, tidal forces act to

tear 1t apart.



“Spaghettification”

The differential acceleration that an object will experﬁﬁ‘e along
an element dr 1s: .

the tidali force will increase as the object
approaCheSfrom infinity to the black hole. For a solar mass
black Hole the, tidal forces can be deadly even before crossing
the event horizOHMAS the body approaches the singularity the
tidal forces tend to infinite. '



Surface gravity










Radial motion of photons

In the case of photons we have that ds* = 0. The radial motion, then, satisfies:

2GM 2GM\ !
(1— )c2dr2—(1— ) dr’ =0.
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Radial motion of photons

Integrating, we have:

— 1 ‘ + constant outgoing photons,

— 1 ’ + constant incoming photons.




Radial motion of photons

In a (ct, r)-diagram the photons have world-lines with slopes +/—1
as r—oo, indicating that space-time 1s asymptotically flat. As the
events that generate the photons approach to » = rg,.» the slopes

tend to +/— o0. This means that the light cones become thinner and
thinner for events close to the event horizon. At » = rg,, the

photons cannot escape and they move along the horizon.

An observer at infinity will never detect them.
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Circular motion of photons

In this case, fixing 6 = constant due to the symmetry, we have that
photons will move in a circle of » = constant and ds2 = 0. Then,

This means that

, 2GM

I‘C2

) = constant.



Circular motion of photons

The circular velocity is:

. rcfS B Qr
Peire = = o0 (1 —2GM/c2r)\ /2

Setting vgjre = ¢ for photons and using 2 = (GM/r?)1/2, we get that the only pos-
sible radius for a circular photon orbit is:
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Circular motion of photons

For a compact object of 1 M, 7, = 4.5 km, in comparison with

the Schwarzschild radius of 3 km. Photons moving at this
distance form the “photosphere” of the black hole.

The orbit, however, is unstable, as it can be seen from the effective potential:




Circular motion of photons

Figure The eftective potential for photon orbits.
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Circular motion of photons
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Circular motion of photons
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A Distinct Critical Impact Parameter for the Far and Near Observer
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Gravitational lensing

black

‘ hole
lower side

accretion of the disk
disk
How would we see a black hofe. ?
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Gravitational lensing




Gravitational capture

A particle coming from infinity is captured if its trajectory ends in the black hole.
The angular momentum of a non-relativistic particle with velocity vy at infinity is
L = mvsob, where b is an impact parameter. The condition L/mcrschw = 2 defines
Der non-rel = 2rschw(¢/Vo). Then, the capture cross section is:
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Gravitational capture

For an ultra-relativistic particle, bey = 34/3rchw /2, and then

27,
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Orbits in Kerr spacetime
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Orbits in Kerr spacetime
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Orbits in Kerr spacetime
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Orbits in Kerr spacetime

For the “+ sign this is satisfied by rms = GM /c?, whereas for the “—* sign the

solution is ryms = 9GM/c?. The first case corresponds to a co-rotating particle and
the second one to a counter-rotating particle. The energy of the co-rotating particle
in the innermost orbit is 1/+/3 (units of mc?). The binding energy of a particle
in an orbit is the difference between the orbital energy and its energy at infinity.
This means a binding energy of 42 % of the rest energy at infinity! For the counter-
rotating particle, the binding energy is 3.8 %, smaller than for a Schwarzschild black
hole.
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Figure 13.5 The scaled coordinate radii r/p (left) and the constant ks =

2 ;. ~ . . . .
E/(myc”) (right) for the innermost stable co-rotating and counter-rotating circu-
lar orbits in the equatorial plane of the Kerr geometry, as functions of a/pu.




Orbits in Kerr spacetime




Orbits of photons 1n Kerr spacetime




Orbits of photons in Kerr spacetime
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Orbits of photons in Kerr spacetime




Orbits of photons in Kerr spacetime




Effects of black hole spin
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Pseudo-Newtonian potentials

The full effective general relativistic potential for particle orbits around a Kerr black
hole is quite complex. Instead, pseudo-Newtonian potentials can be used. The first of

such potentials, derived by Bohdam Paczynski and used by first time by Paczynski
and Wiita (1980), for a non-rotating black hole with mass M, is:

GM
b = — .
r—2r‘g

With this potential one can use Newtonian theory and obtain the same
behavior of the Keplerian circular orbits of free particles as in the exact
theory: orbits with 7 < 9r, are unstable, and orbits with » < 6r, are unbound.

However, velocities of massive particles obtained with the potential are not

accurate, since special relativistic effects are not included (Abramowicz et al.
1996).



Pseudo-Newtonian potentials

The velocity v, calculated with the pseudo-Newtonian potential
should be replaced by the corrected velocity v, such that

CoIr CoIr CcoIrr

vp—N - Up—N yp—Na yp—N —

This re-scaling works amazingly well (see Abramowicz et al. 1996)
compared with the actual velocities. The agreement with General
Relativity 1s better than 5 %.



Black hole thermodynamics

The area of a Schwarzschild black hole is

1671 G*M?>
e

2
ASCh\V — 47[ I‘Schw p—

When a black hole absorbs a mass oM, its mass increases to M+ oM,
and hence, the area increases as well. Since the horizon can be crossed in
just one direction the area of a black hole can only increase. This
suggests an analogy with entropy.




Black hole thermodynamics

Particles trapped in the black hole will have a wavelength:

he
ph = hv = hc/A =kT A = ﬁ X T'Schw s

where kis the Boltzmann constant. Then.

. he B 2GM
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where & 1s a numerical constant. Then.
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Black hole thermodynamics

A quantum mechanical calculation of the horizon temperature in the Schwarzschild
case leads to & = (47)~ L. So,

hed M
Tay = ~ 1077 K[ =2
8G Mk M

And we can write the entropy of the black hole as:

ke3
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Black hole thermodynamics

The formation of a black hole implies a huge increase of
entropy. Just to compare, a star has an entropy ~20 orders

of magnitude lower than the corresponding black hole.
This tremendous increase of entropy i1s related to the loss

of all the structure of the original system (e.g. a star) once
the black hole is formed.




TABLE 1
CURRENT ENTROPY OF THE OBSERVABLE UNIVERSE (SCHEME 1 ENTROPY BUDGET)

Component Entropy Density s [k m™] Entropy S [k] Entropy S [k] (Previous Work)
1139 x"1+(3;°4 1010171], 101°3£3]_ 10103[3]
9 x 1097413 1097[2], 10%8[4]
4040.15 x 10%° 10%8[1,2.4], 10%°[5]

1640.15 x 10%° 10%8[2].10%[5]
% 1088:1:1 —

SMBHs 8 4+82 X 10-

Stellar BHs (2.5—15 M) 1.6x 101798
Photons 1.47840.003 x 10°
Relic Neutrinos 1.41140.014 % 10°
WIMP Dark Matter 5x 107%!1

Relic Gravitons 1.7 x 10723 2 x 1087233 1086[2,3]
ISM and IGM 20415 1+5.6x 108! -
Stars 0.26+0.12 9.5+4.5x 1080 107°[2]
Total 8.4757 x 10%° 3.1777 1017 1), 10102 2). 10193 (3]
Tentative Components:

Massive Halo BHs (10° Mg) 107 101%[6]
Stellar BHs (42— 140 M) 8.5 x 101815 3. e -

NOTE. — Our budget 1s consistent with previous estimates from the literature with the exception that SMBHs,
which dominate the budget, contain at least an order of magnitude more entropy as previously estimated, due to
the contributions of black holes 100 times larger than those considered in previous budgets. Uncertainty in the
volume of the observable universe (see Appendix) has been included in the quoted uncertainties.  Massive halo
black holes at 10° M, and stellar black holes in the range 42—140 M, are included tentatively since their existence
1s speculative. They are not counted in the budget totals. Previous work: [1] Penrose (2004). [2] Frampton et al.
(2009), [3] Frampton & Kephart (2008), [4] Frautschi (1982), [5] Kolb & Turner (1981), [6] Frampton (2009b).
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Black holes dominate the observable entropy of the universe




Black hole thermodynamics: The four laws

e First law (energy conservation): dM =1TgudS + Q4d.J + ¢dC). Here. € is
the angular velocity and @ the electrostatic potential.

e Second law (entropy never decreases): In all physical processes involving
black holes the total surface area ol all the participating black holes can

never decrease.
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Black hole thermodynamics: The four laws

e Third law (Nernst’'s law): The temperature (surface gravity) of a black
black hole cannot be zero. Since T = 0 with A # 0 for extremal charged
and extremal Kerr black holes. these are thought to be limit cases that
cannot be reached in Nature.

Zeroth law (thermal equilibrinm): The surface gravity (temperature) is
constant over the event horizon of a stationary axially svmmetric black
hole.




Quantum effects in black holes

If a temperature can be associated with black holes. then they should radiate as
any other body. The luninosity of a Schwarzschild black hole is:

167ohi*c®
(8m)4G2 M2 1A

Y P 4 ,
LBH = 4mi Sch“-'(TIBH ™~

Here. o is the Stephan-Boltzmann constant. This expression can be written as:

-/ Mo\ 2
Lgg = 10~17 ( \[) erg s71,




Quantum effects in black holes

The lifetime of a black hole 1s:

M | e M 8
T ! ~ 2.5 x 10™ A years.

dM /dt

Notice that the black hole heats up as it radiates!. This occurs because when the
hole radiates. its mass decreases and then according to Eq. (235) the temperature
must rise.




Quantum effects in black holes




Quantum effects in black holes

This picture is a misleading interpretation of the actual
situation. The radiation is electromagnetic and not in the
form of pairs, at least for astrophysical black holes.



Novikov & Frolov

10" >M > 19"33,

: 102
radiation . s . p 10" %Z(Tj

Figure 10.7: Quantum decay of a non-rotating black hole. The fractions of gravitons (g),
photons (), neutrinos (~) and other elementary particles are given in percent of the total
number of particles emitted by black holes of different masses.
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Figure 10.6: Power spectra from a non-rotating black hole. The curves plot the contribu-
tions of four neutrino species (1), photons (2), and gravitons (3), and the aggregate spectrum
{4). For the sake of comparison, the black body radiation spectrum of these particles with
cross-section 27xM? is given (curve 5) [data from Page (1976a)].




Hawking radiation

Collapse




Heisenberg picture

In the Heisenberg picture of quantum mechanics the state vectors,
), do not change with time, while operators satisty

If H 1s independent of time:

AR)=U@)""A0)U(), Ult)=e

U(t) is a unitary operator, so U(t)™! = U(t)! = et? ¥




Quantum aspects of black holes

To study Hawking radiation we have to
estimate the expectation value of the
energy-momentum tensor of quantum
fields in the vacuum close to the horizon.
v: In, u#: out

There is an event horizon at some value of r for which C =0 (we
assume the spacetime to be non-singular outside the horizon). For

example C = 1 — 2Mr~ ! has an event horizon at r = 2M, and models in two
dimensions the Schwarzschild black hole. Similarly, C =1 —2Mr~! 4 ¢%r~2
models the Reissner—Nordstrom black hole. |




There will, however, be a nonzero vacuum ‘polarization’ stress due to
spacetime curvature,

{0|T, 10> =(O|T,,[0> = —F(C)=(1/192m)[2CC" — C'*]

CO|T,.10%> =(1/96m)CC",

where the functional F is defined by

| Ak ;
? -3
Vvi—y
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and a prime denotes differentiation with respect to r.




For a Reissner-Nrodstrom black hole:

C(r)=(1—-2Mr~1 +e2r ?),

2t 2r8 r r

1 M 3M? 3e IMe? 4
<0|T,,.,|0>x<0|'r,,,,|0>-—-m[———+———--—+-——-—- - +e—g]

R=2M, e=0

which is precisely the flux expected (in two spacetime dimensions) from a
thermal radiator with temperature T=k/2nkg

which i1s the Hawking temperature




Inspection of (0|T,,|0) at the event horizon shows

1 [0C\?

192 ( or )
which is always negative, and equal to minus the Hawking flux at infinity.
This is necessarily true because covariant conservation was built into the
construction of (T,,>. As (T,,) represents a null flux crossing the event
horizon, one can see that the steady loss of mass—energy by the Hawking
flux is balanced by an equal negative energy flux crossing into the black hole

from outside. The hole therefore loses mass, not by emitting quanta, but by
absorbing negative energy.

that it is given by
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n=0 m=0

= 1/(ef* - 1),

with E, = nw, = 2n/x

i.e., a Planck spectrum.

Hawking’s work places Bekenstein’s conjecture on a firm foundation,
and supplies the precise relation (see, for example, DeWitt 1975)

fy - %’ksd.

Hawking’s temperature T=k/2nkg




Black hole information paradox

“Is information destroyed by black holes?”

Hawking: Yes (1976), No (2011).

What is information? It 1s a polysemic word. In ordinary usage
‘Information” 1s a property of languages. In information theory
‘Information’ 1s a measure of the amount of data transmitted 1n a
signal from a transmisor to a receiver and decoder.

Hence, there 1s no “law of information conservation”. Actually,
information is usually lost when a signal is sent from the sender to the
recelver.

Some authors confuse “information” with “entropy”, which i1s a
5
thermodynamic concept.



“Entropic paradox™: the entropy of black holes decreases
when they evaporate. l

The Second LLaw requires that the entropy increases or 1s at a
maximum only for closed systems. BHs interact with their
environment and are open systems.

=

“Paradox of predictability”: GR cannot predict the future
evolution of the system after evaporation despite there are no
classic Cauchy horizons.

Yes: GR 1s incomplete (Penrose theorems)



BH-QM paradox

Take a quantum system 1n a pure state and throw it into a black hole.
Wait until the hole has evaporated enough to return to its mass previous
to throwing anything in. What we start with 1s a pure state and a black
hole of mass M. What we end up with 1s a thermal state and a black
hole of mass M. We have found a process (apparently) that converts a
pure state into a thermal state. But, a thermal state is a MIXED state
(described quantum mechanically by a density matrix rather than a
wave function). We took a state described by a set of eigenvalues and
coefficients, a large set of numbers, and transformed it into a state
described by temperature, one number.

In technical jargon, the black hole has performed a non-unitary
transformation on the state of system.



There are several possible solutions to this problem :

I.Quantum mechanics 1s not longer valid inside the BH (Hawking,
then).

2.Relativity 1s no longer valid.
3.Hawking radiation does not exist.
4. Black holes do not exist (Hawking, before dying).

5.The evolution of the quantum system 1s no unitary and there 1s no
problem (system).



Black hole interiors

The most relevant feature of a Schwarzschild black hole interior 1s
that the roles of space and time are exchanged: the space radial
direction becomes time, and time becomes a space direction.
Inside a spherical black hole, the radial coordinate becomes time-
like: changes occur in a prefer direction, 1.e. toward the space-time
singularity.

This means that the black hole interior 1s essentially dynamic.



Black hole interiors

If we consider a radially infalling test particle:
2GMY .. 2GMN\ L .
(l - ~ ) Adt? — (l - 5 > dr?.

ree I

The structure of the light cones is defined by the condition ds = 0. Writing rschw
once again for the Schwarzschild radius. we get:

~1
‘,-_‘ . ‘ ¢ "_‘ T y -
(1 _ I'Schw ) (,2(”2 . (1 _ [ Schw ) (]I'2 = 0.
r 7

If we consider the interior of the black hole. r» < rqepw. Themn.

-1
‘I'_' r 1 ]._' r ¢ ¢ )
(1 _ 'Schw ) (,[],2 . (1 _ !'Schw ) (12(11“2 — 0.
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Black hole interiors
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Black hole interiors

In the case of a Kerr black hole, between the two horizons
space and time also exchange roles as it happens with the
Schwarzschild interior black hole space-time. The radial
dimension of space moves inexorably inward to the second
horizon, that it 1s also a Cauchy horizon, 1.e. a null hyper-
surface beyond which predictability breaks down.

The Kerr solution predicts a second reversal so that one can
avold the ring singularity and achieve to orbit safely. In this
strange region inside the Cauchy horizon the observer can, by
selecting a particular orbit around the ring singularity, travel
backwards 1n time and meet herself, 1.e. there are closed time-
like curves.



Bifurcated supertasks
for hypercomputation?




Cauchy
Horizon
r=r.

Event Horlzon

r=r,




Israel & Poisson (1990) showed:

where v 1S the advanced time coordinate, & the
surface gravity of the Cauchy horizon and om the
equivalent mass of the inflow. The exponential
always dominate, producing a divergence when v
goes to oo



Black hole interiors: singularities

& A space-time 1S said to be singular if the manifold M that
represents it 1S incomplete.

& A manifold 1s 1ncomplete if 1t contains at least one
inextensible curve.

& A curve y : [0, a) —M 1s iextensible if there 1s no point p in
M such that y (s)—p as a—s, 1.e. y has no endpoint in M. A
given space-time (M, g,) has an extension if there i1s an

isometric embedding 6: M —M, where (M, g,,) 1S a space-
time and 6 1s onto a proper subset of M.



Black hole interiors: singularities

A space-time 1S singular 1t it contains a curve jp that is
iextensible i the sense given above. Singular space-times are
said to contain singularities, but this 1S an abuse of language:
singularities are not “things™ in spacetime, but a pathological
feature of the theory. Actually, “singularities” cannot exist in
space-time by definition.




Black hole interiors: singularities

An essential singularity occurs when g;; — 00

Essential singularities (i.e. essentially singular space-time
models):

*Space-like: unavoidable

*Time-like: avoidable

*Scalar: all scalars diverge

*Non-scalar: some scalars remain finite.



Black hole interiors: singularities

An essential or true singularity should not be interpreted as a
representation of a physical object of infinite density, infinite
pressure, etc. Since the singularity does not belong to the
manifold that represents space-time in General Relativity, it
simply cannot be described or represented in the framework of
such a theory.

General Relativity 1s incomplete in the sense that i1t cannot
provide a full description of the gravitational behavior of all
physical systems. True singularities are not within the range of
values of the bound variables of the theory: they do not belong to
the ontology of a world that can be described with 4-dimensional
differential manifolds.




Black hole interiors: singularities

An essential singularity in solutions of the Einstein Lield equations is one of
two things:

A situation where matter is forced to be compressed to a point (a space-like
singularity ).

A situation where certain light rayvs come from a region with infinite cur
vature (time-like singularity).

Space-like singularities are a feature of non-rotating uncharged black-holes. whereas
time-like singularities are those that occur in charged or rotating black hole exact
solutions, where time-like or null curves can alwavs avoid hitting the singularities.




What is referred to as a singularity does not belong to classical
space-time. Matter 1S compressed to such a point that its effects on
space-time cannot be described by General Relativity. At such
small scales and high densities, relations among things should be
described 1n a quantum mechanical way. Since even in the standard
quantum theory time appears as a continuum variable, a new
approach is necessary.




Black hole interiors: censorship

Beginning

/ point

Space-time singularities are expected to be covered by horizons. Although
formation mechanisms for naked singularities have been proposed. the following
conjecture 1s usually considered valid:

e Cosmic Censorship Conjecture (Roger Penrose): Singularities are always
hidden behind event horizons. (space-like)

We emphasize that this conjecture is not proved in General Relativity and
hence it has not the strength ol a theorem of the theory.




Singularity theorems

Theorem. Let (M, gqp) a time-oriented space-time satisfving the following
conditions:

R,V eVh > 0 for any non space-like V4,
2. There exists a compact space-like hypersurface X C M without edge.
3. The unit normals to X are evervwhere converging (or diverging).

Then. (M. gu) is time-like geodesically incomplete.

Although singularity theorems apply to spherically svinmetric black holes.
they do not seem to apply to the Universe as a whole.




The rate of change of the volume expansion as the time-like geodesic curves in
the congruence are moved along 1s given by the Raychaudhuri (1955) equation:

do )

1
= _RabVaVb . §92 . O.abo.ab + W,

dt




We can use now Einstein’s field equations to relate the congruence with the
space-time curvature:

1
RV =k [TabV” vh 4 5T] .

The term 7,7V represents the energy density measured by a time-like observer
with unit tangent for velocity 7. The weak energy condition then states that:

T,VV? >0. WEC
A stronger condition is:
T VVP + ;T >0. SEC
Notice that this condition implies,

R VeV >0




We see then that the conditions of the Hawking-Penrose theorem imply that the
focusing of the congruence yields:

(3.44)

where we have used that both the shear and the rotation vanishes. Equation (3.44) in-
dicates that the volume expansion of the congruence must be necessarily decreasing
along the time-like geodesic. Integrating, we get:

1 1
— > 1

T

06~ 6y 3
where 6 1s the 1nitial value of the expansion. Then, 6 — —cc 1n a finite proper time
T < 3/|6p|. This means that once a convergence occurs in a congruence of time-

like geodesics, a caustic must develop in the space-time model. The non space-like
geodesics are in such a case inextendible.
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To interpret the singularity theorems as theorems about the existence of certain space—time
models is wrong. Using elementary second order logic is trivial to show that there cannot be
non-predicable objects (singularities) in the theory. If there were a non-predicable object in
the theory,

(Ex)g (VP) ~ Px, (2)

where the quantification over properties in unrestricted. The existential quantification (3x) g,
on the other hand, means

(Ax)g = 3x) A(x € E).
Let us call P; the property ‘x € E’. Then, formula (2) reads:
(Ax)(VP)(~ Px A Pix), (3)

which is a contradiction, i.e. it is false for any value of x.
We conclude that there are no singularities nor singular space—times. There is just a theory
with a restricted range of applicability.




additional: Quantum field theory in curve

space-time and quantum black hole effects.

Conventions:




. Quantum mechanics

In quantum mechanics pure quantum states of quantum systems
correspond to vectors in a Hilbert space, while each property (such
as the energy or momentum of the system) i1s associated with a
mathematical operator. The operator serves as a linear function
which acts on the states of the system. The eigenvalues of the
operator correspond to the possible values of the property.

The pure states correspond to vectors of norm 1. Thus the
set of all pure states corresponds to the unit sphere in the
Hilbert space.



A mixed quantum state corresponds to a probabilistic mixture of
pure states; however, different distributions of pure states can
generate equivalent (1.e., physically indistinguishable) mixed states.
Mixed states are described by so-called density matrices. A pure
state can also be recast as a density matrix; in this way, pure states
can be represented as a subset of the more general mixed states.

The Hilbert space 1s a phase complex space of infinite dimensions. It
1S not a physical space-time.




Heisenberg picture

In the Heisenberg picture of quantum mechanics the state vectors,
), do not change with time, while operators satisty

If H 1s independent of time:

AR)=U@)""A0)U(), Ult)=e

U(t) is a unitary operator, so U(t)™! = U(t)! = et? ¥




(7,2) = (¥|9)

= [~ ¥(2)*®(x) da.

(U|z(t)|¥) and (¥|p(t)|T) are the expectation
values of the position and momentum if those quantities were to be
measured at time ¢ with the particle in the state W. The state itself is
a time-independent concept (at least so long as the system evolves un-
der its internal dynamics, without interaction with external agencies).
The state ¥ is an abstract object in a Hilbert space, H. It is repre-
sented by a function ¥(z) € L£?; this representation has been arbitrarily
chosen to be the one which gives directly the probability density for po-
sition measurements at ¢t = 0.



The canonical commutation relation i1s the fundamental relation
between canonical conjugate quantities (quantities which are
related by definition such that one is the Fourier transform of
another). For example,

In general, position and momentum are vectors of operators and
their commutation relation between different components of
position and momentum can be expressed as

[f‘i,ﬁj] — Zhéw



(Algebra structure) ~
The structure of ¢, Lie algebra of G is

7., jj] = iﬁa,;,-kjk, [/, 1@] = ihe Ky, [J,, P,]=ike, P,
K, Hl1=ihP, [K;, Pl=iho,M

J,,H]=0, [K.K]1=0, [P,P]=0, [P, H]=0
J,M]=0, [K,M]=0, [P,M]=0, [H M]=0

where M is an element of the Lie algebra of a one-parameter
subgroup (which is used to extend G).

G 1s the Galilei group.

H is the time-translations generator.



Interpretation

(Probability densities)

(V<0,6>eZxE)A (VAcAdsA=od, decP)r{¥|adeH>
Alad=alad) A (Y |¥) e ¥ # that corresponds to the state
of ¢ when it 1s influenced by 6):

(Y |lad{aly ) =probability density for the property ./ when o
is associated to & (i.e., {32 <y|a){ay ) da is the probability for
¢ to have an .«/-value in [a,, a5 ]) (SA)




Interpretation

V{0, 6>e X x X, eiv H=E represents the energy value of ¢ when
it 1s influenced by &. (SA)
P, is the gencrator of spatial translations on the Cartesian coor-
dinate axis X,.

V{(o,5>e X x X, civP,= p, represents the i component of the
linear momentum of o. (SA)
J, is the generator of spatial rotations around the Cartesian
coordinate axis X,

V{o,6)e X x X, eivJ,=j, represents the i component of the
angular momentum of o. (SA)



Interpretation

K, is the generator of pure transformations of Galilei on the axis
X ..

M has a discrete spectrum of real and positive eigenvalues.

V<{o,6)eX xZ, eiv M = p represents the mass of o. (SA)
V{o,6>eXx2, if X,=p;(1/u)K,, then eiv X, = x, represents
the i component of the position of o. (SA)




(Heisenberg’s inequalities) ) )
(V{o,6)eZxZ) A (Y[h>eH) A (V{d,B, ClcAsd=d,

-~

B=#, C2% with {, B,€} = P) if [4, B] iC =
(44)* (4B)* = |C|*/4

If [X,, P]1=+#0,1 then

AX, AP, > h)2




.k
- 5 Al 1,27

with 7, =AA/|d{(A>/dt|.




Schrodinger picture

In the Schrodinger picture of quantum mechanics the state vectors,
v (1)), evolve with time according to




2. Quantum fields in flat space-time

A classical physical field 1s a system whose properties are
defined at each point of space and time. They are
represented by mathematical functions defined on the
manifold that represents space-time. Formally, they have
infinite degrees of freedom.

We can define a field model by a Lagrangian density and
get the equations of motions using the associated action.



2. Quantum fields in flat space-time

Let us consider a scalar field in Minkwoski space-time

L x)=20" ¢ b, —m*$7)

— R e



2. Quantum fields in flat space-time

P(t, X) = Z [a,u, (t, X) + aluf(t, x)].

uk(t,x) oc eik-x — iwt

w = (k* + m?)

n—1 %
k§|k1=( Y k,z)
i=1




2. Quantum fields in flat space-time

(uk’ uk') = 0: k % k’. (uk’ uk‘) — 67: - l(k_ k').

TRES [201(21!)" - 1]—§eik-x - iwt




2. Quantum fields in flat space-time

The field 1s quantised by treating it as an operator and
imposing the canonical commutation relations.

(e, x), $(t,x')] =0
[z, x), nl¢, x7) ] =0
[(t,x), n(t,x')] =i6"" ' (x — x')
where = is the canonically conjugate variable to ¢ defined by

0¥
N

n



2. Quantum fields in flat space-time

The equal time commutation relations for ¢ and = are then equivalent to

[ak’ak'] =0
[af,al]=0

[ak’alt'] = Oy




Similarly one may construct many-particle states

1y, Lo - - 1y,” _akgakz ak 10>,
if all k,, k,,...,k; are distinct. If any a, are repeated, then
"My 2y m > = (Cnt2nl. int)Xa] )'""(a},)™". . . (a} )"|0),

the n! terms being necessary to accommodate the Bose statistics of identical
scalar particles. Also

ailm > =+ Hn+ 1),

aylm > = nt|(n—1),).




Fock basis

The basis vectors are normalized according to

1 2 r 1 2 s
< nk!, nkz,ono, nkr' mk;, nzk:z,..., mk;>

- 6,.3 z 6‘"““"’!' .o 6rna(.\')m5k’koa‘“ ¢ o e 6krk'c(8)
a

where the sum is over all permutations « of the integers 1...s.




Taﬂ = ¢,a¢,ﬂ “ %”aﬂn16¢,1d’,6 + %mz ¢2 naﬂ

from which one obtains for the Hamiltonian density

=—5—[(a +'Y O ¢)2+m2¢2]

i=1
and for the momentum density

T,,-=6,¢6,-¢, i=1,...,n—1,







T]_ T T

ak, a ] = Ok — axa, — a, akx = 1

aka;r{ = a;r{ak + 1

1 1
H = §Zk(altak + a,ka;r{)w — Zk(a;r{ak + i)w



H = Z (alak + “%)w
k

Clearly, both H and P; commute with the operators
N, =aja,

and
N=) N,

k

[N,H]=[N,P;]=0.



(O|N,[0) =0, VK

<lnh, 2nk2,...,1nkleki' nh, 2nk2,...,"nkj> - ‘n.

(NI =Y.

Thus, the state |'n, ,%n, ,...,7n, ,> is a state containing 'n quanta in the
mode with momentum k,, ?n quanta in the mode with momentum k, and
SO On.

Thusa, is referred to as anannihilation operator and a} as a creation operator,
for quanta in the mode k.




The problem of the divergences

Special interest attaches to the state |0). This is the no-particle, or vacuum
state. 1t carries zero momentum

CO[PI0)> =0,

CO[H]0) = <0|0) Z%

=NL2n)"" ! |wd"~ 1k

This sum 1s infinite!



This infinity apparently indicates that the vacuum contains an
infinite energy density. The trouble comes from the 2 w zero-point
energy with each simple mode of the scalar field. Since w has no
upper bound, the zero-point energy can be arbitrarily large. In flat
space-time, however, we can re-scale or re-normalize the zero-point
energy since only differences in energy are meaningful. This 1s done
by ordering the application of the annihilation and creation
operators: all annihilation operators must stand to the right of the
creation operators. This 1s indicated by ::

H:=)Y ala,w
| k

and the troublesome {w term has disappeared.



The problem of the divergences

<0l Taﬁ|0> = Z Taﬂ[uks uy |,
k

1 2 i
< nkls nkzv--aITaﬂ'lnkpznkzs'“> = ZTaﬂ[uk’ u:] +22‘nTap[uk‘s u:,-]‘
k i




3. Quantum fields in curved space-time

ds* =g,,(x)dx*dx", pv=0,1,...,(n—1)

Scalar field

Z (x) =3[ — gx)]}{g"" (x)p(x) , plx),, — [m* + ER(x)]1$*(x)}




[0+ m? + ER(x)]p(x) =0

Two values of ¢ are of particular interest: the so-called minimally
coupled case, ¢ =0, and the conformally coupled case

& =14Ln—2)/(n — 1] = &)




(1, 02) = -if ¢>,(xﬁ,¢§(x)‘[—-g,;(x)]*dz"
>

dX# = n* dX, with n* a future-directed unit vector

d(x) = Z La;u;(x) + alu¥(x)].




Quantification

Consider, therefore, a second complete orthonormal set of modes i (x).
The field ¢ may be expanded in this set also

Plx) = Z [a;i1,(x) +aji}(x)].

This decomposition of ¢ defines a new vacuum state |0 :

and a new Fock space.




As both sets are complete, the new modes #; can be expanded in terms of
the old:

;= Y (it + But).

Conversely

U, = Z(a;",uj- ji 1)

These relations are known as Bogolubov transformations




;(aika ﬁtkﬁ )“ ij3

Z (o0 jk Bikajk) =0.
" |




-
|0> will not be annihilated by a;:

= Loyl + 1)) al0> = LA, #0

. In fact, the expectation value of the operator N; =a{a,
for the number of u;-mode particles in the state |0 is

COIN;|0) = Z 1Bl
—

which is to say that the vacuum of the #; modes contains X ;| § ;| 2 particles in
the u; mode.




Thus, the two sets of modes u; and #, share a common vacuum state. If any
Bi #0, the u, will contain a mixture of positive-(u;) and negative-(u})
frequency modes, and particles will be present.

Part of the reason for the nebulousness of the particle concept is its global
nature. The modes are defined on the whole of spacetime (or at least a large
patch) so that a particular observer’s specification of the field mode
decomposition, and hence the number operator describing the response of
a particle detector carried by him, will depend, for example, on the
observer’s entire past history. To obtain a more objective probe of the state
of a field one must construct locally-defined quantities, such as
<YIT,(x)ly >, which assumes a particular value at the point x of spacetime.

In general there 1s no simple relation between { N,)> and the particle
number as measured by a detector, even if it is freely falling,







All two-dimensional spacetimes are conformally flat:

g,uv = C(x)nu\"

ds? = C(u, v)dudv,

= — (1/12m)Ci32C}

0,
0,,= — (1/12m)Cie2Ct
9.,

=§,,=0.




4. Quantum aspects ot black holes

To study Hawking radiation we have to
estimate the expectation value of the
energy-momentum tensor of quantum
fields in the vacuum close to the horizon.
v: In, u#: out

There is an event horizon at some value of r for which C =0 (we
assume the spacetime to be non-singular outside the horizon). For

example C = 1 — 2Mr~ ! has an event horizon at r = 2M, and models in two
dimensions the Schwarzschild black hole. Similarly, C =1 —2Mr~! 4 ¢%r~2
models the Reissner—Nordstrom black hole. |




There will, however, be a nonzero vacuum ‘polarization’ stress due to
spacetime curvature,

{0|T, 10> =(O|T,,[0> = —F(C)=(1/192m)[2CC" — C'*]

CO|T,.10%> =(1/96m)CC",

where the functional F is defined by

| Ak ;
? -3
Vvi—y
2 0x?

1"",c(y)=l

and a prime denotes differentiation with respect to r.




For a Reissner-Nrodstrom black hole:

C(r)=(1—-2Mr~1 +e2r ?),

2t 2r8 r r

1 M 3M? 3e IMe? 4
<0|T,,.,|0>x<0|'r,,,,|0>-—-m[———+———--—+-——-—- - +e—g]

R=2M, e=0

which is precisely the flux expected (in two spacetime dimensions) from a
thermal radiator with temperature T=k/2nkg

which i1s the Hawking temperature




Inspection of (0|T,,|0) at the event horizon shows

1 [0C\?

192 ( or )
which is always negative, and equal to minus the Hawking flux at infinity.
This is necessarily true because covariant conservation was built into the
construction of (T,,>. As (T,,) represents a null flux crossing the event
horizon, one can see that the steady loss of mass—energy by the Hawking
flux is balanced by an equal negative energy flux crossing into the black hole

from outside. The hole therefore loses mass, not by emitting quanta, but by
absorbing negative energy.

that it is given by

K2

T o 0
r= Rh 48n .







Black hole see
< to explode
|
f +
r=0 ? o
4
Black hole —-
J
i : 5
L /




<OK|N¢:IOK>= z noe—ﬂE"/ Z e"ﬁEm
n=0 m=0

= 1/(ef* - 1),

with E, = nw, = 2n/x

i.e., a Planck spectrum.

Hawking’s work places Bekenstein’s conjecture on a firm foundation,
and supplies the precise relation (see, for example, DeWitt 1975)

fy - %’ksd.

Hawking’s temperature T=k/2nkg




Black hole information paradox

“Is information destroyed by black holes?”

Hawking: Yes (1976), No (2011).

What is information? It 1s a polysemic word. In ordinary usage
‘Information” 1s a property of languages. In information theory
‘Information’ 1s a measure of the amount of data transmitted 1n a
signal from a transmisor to a receiver and decoder.

Hence, there 1s no “law of information conservation”. Actually,
information is usually lost when a signal is sent from the sender to the
recelver.

Some authors confuse “information” with “entropy”, which i1s a
5
thermodynamic concept.



“Entropic paradox™: the entropy of black holes decreases
when they evaporate. l

The Second LLaw requires that the entropy increases or 1s at a
maximum only for closed systems. BHs interact with their
environment and are open systems.

=

“Paradox of predictability”: GR cannot predict the future
evolution of the system after evaporation despite there are no
classic Cauchy horizons.

Yes: GR 1s incomplete (Penrose theorems)



BH-QM paradox

Take a quantum system 1n a pure state and throw it into a black hole.
Wait until the hole has evaporated enough to return to its mass previous
to throwing anything in. What we start with 1s a pure state and a black
hole of mass M. What we end up with 1s a thermal state and a black
hole of mass M. We have found a process (apparently) that converts a
pure state into a thermal state. But, a thermal state is a MIXED state
(described quantum mechanically by a density matrix rather than a
wave function). We took a state described by a set of eigenvalues and
coefficients, a large set of numbers, and transformed it into a state
described by temperature, one number.

In technical jargon, the black hole has performed a non-unitary
transformation on the state of system.



Spacelike
singularity

Spacelike i

singularity |

Exterio

A. Non-evaporating black hole B. Evaporating black hole



There are several possible solutions to this problem :

I.Quantum mechanics 1s not longer valid inside the BH (Hawking,
then).

2.Relativity 1s no longer valid.
3.Hawking radiation does not exist.
4. Black holes do not exist (Hawking, now).

5.The evolution of the quantum system 1s no unitary and there 1s no
problem (system).



